Kamis, 17 Januari 2013

SILABUS PEMBELAJARAN SATUAN PENDIDIKAN : SMA/MA KELAS/SEMESTER : XI/1 MATA PELAJARAN : MATEMATIKA STATISTIKA Standar Kompetensi 1 : Menggunakan Aturan Statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Alokasi Waktu Sumber Belajar Teknik Bentuk Contoh Instrumen 1.1 membaca data dalam bentuk tabel dan diagram batang, garis, lingkaran dan ogive STATISTIKA: diagram garis diagram batang diagram lingkaran ogive dan histogram mengamati dan mengidentifikasi tentang data -data disekitar sekolah mengidentifikasi data-data yang dinyatakan dalam berbagai model mengelompokkan berbagai macam diagram dan tabel menyimak konsep tentang penyajian data membaca sajian data dalam bentuk diagram garis, diagram lingkaran dan diagram batang mengidentifikasi nilai suatu data yang ditampilkan pada tabel dan diagram tes tertulis uraian Siswa SMA Negeri Jaya Selalu yang lulus mulai tahun pelajaran 2000/2002 s.d tahun pelajaran 2006/2007 Analisalah diagram diatas! Berikut ini adalah data ulangan nilai matematika dari 32 orang siswa: 30, 40, 80, 70, 78, 69, 45, 78, 35, 70, 80, 90, 68, 90, 90, 89, 65, 75, 85, 85, 45, 56, 75, 68, 70, 70, 80, 70, 45, 65, 75, 85. Sajikanlah data tersebut ke dalam bentuk tabel distribusi frekuensi berkelompok! 4 x 45 Buku paket buku referensi lain internet Kompetensi dasar Materi pembelajaran Kegiatan pembelajaran Indikator pencapaian kompetensi Penilaian Alokasi waktu Sumber belajar Teknik Bentuk Contoh instrumen 1.2 menyajikan data dalam bentuk tabel dan diagram batang, garis, lingkaran dan ogive serta penafsirannya statistika: diagram garis diagram batang diagram lingkaran ogive dan histogram melakukan latihan dalam berbagai penyajian data menafsirkan data dari berbagai macam bentuk mengambil kesimpulan dari dua atau lebih kelompok data atau informasi yang sejenis menyajikan data dalam bentuk diagram batang, garis, lingkaran dan ogive serta penafsirannya menafsirkan data dalam bentuk diagram batang, garis, lingkaran dan ogive tes tertulis uraian Sebuah areal parker akan di amati jumlah kendaraan yang parker dalam selang waktu tertentu, data tersebut di sajikan dalam bentuk berikut : Waktu Banyak kendaraan 06.00 0 08.00 14 10.00 18 12.00 20 14.00 12 16.00 8 18.00 18 Daftar frekuensi kumulatif kurang dari dan lebih dari dapat disajikan dalam bidang Cartesius. Tepi atas (67,5; 70,5; …; 82,5) atau tepi bawah (64,5; 67,5; …; 79,5) buatlah ogive kemudian tafsir data tersebut! 4 x 45 Buku paket buku referensi lain internet Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Alokasi Waktu Sumber Belajar Teknik Bentuk Contoh Instrumen 1.3 menghitung ukuran pemusatan, ukuran letak dan ukuran penyebaran data serta penafsirannya ukuran pemusatan: rataan, nodus, median ukuran letak: kuartil, desil ukuran penyebaran: jangkauan, simpangan kuartil, variansi dan simpangan baku mendiskusikan pentingnya penyajian data dalam bentuk histogram dan ogive membuat tabel distribusi frekuensi dari data tertentu menggambar grafik histogram dari tabel distribusi menghitung ukuran pemusatan data baik data tunggal maupun data berkelompok berdiskusi dengan kelompok untuk menyelesaikan soal-soal sehari-hari untuk mencari ukuran pemusatan data kemudian disajikan dalam bentuk diagram dan menafsirkan hasil yang didapat membaca sajian data dalam bentuk tabel distribusi frekuensi dan histogram menyajikan data dalam bentuk tabel distribusi frekuensi dan histogram menentukan rataan, median dan modus memberikan tafsiran terhadap ukuran pemusatan tes tertulis Uraian Diketahui data sebagai berikut. 80 66 74 74 70 71 78 74 72 67 72 73 73 72 75 74 74 74 72 72 66 75 74 73 74 72 79 71 75 75 78 69 71 70 79 80 75 76 68 68 Buatlah table distribusi frekuensi dari data di atas ? Sajikan dalam histogram!! Nilai rapor seorang siswa pada semester ganjil adalah sebagai berikut : 7, 8, 8, 8, 9, 6, 6, 7, 8, 7. Hitunglah rataan, median dan modus. 4 x 45 Buku paket buku referensi lain internet Kompetensi dasar Materi pembelajaran Kegiatan pembelajaran Indikator pencapaian kompetensi Penilaian Alokasi waktu Sumber belajar Teknik Bentuk Contoh Instrumen 1. 4 menggunakan aturan perkalian, permutasi dan kombinasi dalam pemecahan masalah peluang: aturan perkalian permutasi kombinasi menentukan berbagai kemungkinan pengisian tempat dalam permainan tertentu atau masalah-masalah lainnya berdiskusi mengenai kaidah pencacahan yang mengarah pada aturan perkalian, permutasi dan kombinasi menerapkan rumus aturan perkalian, permutasi, dan kombinasi untuk menyelesaikan soal menyelesaikan masalah-masalah yang berkaitan dengan perkalian, permutasi dan kombinasi menyusun aturan perkalian, permutasi dan kombinasi menggunakan aturan perkalian, permutasi dan kombinasi tes tertulis uraian Dari lima buah angka 2, 3, 5, 7, dan 9 akan disusun menjadi suatu bilangan yang terdiri dari 4 angka. Berapa banyak bilangan yang dapat disusun jika: angka-angka boleh berulang angka-angkanya tidak boleh berulang? Badu mempunyai 5 baju ,3 celana panjang dan 2 topi yang berlainan warna .ada barapa pasang baju,celana panjang dan topinyang dapat dipakai?dan tentukan nilai dari P(8,3),C_7^3 serta 6 x 45 Buku paket buku referensi lain Kompetensi dasar Materi pembelajaran Kegiatan pembelajaran Indikator pencapaian kompetensi Penilaian Alokasi waktu Sumber belajar Teknik Bentuk Contoh Instrumen 1.5 menentukan ruang sampel suatu percobaan ruang sampel mendaftarkan titik-titik sampel dari suatu percobaan acak menentukan ruang sampel dari percobaan acak, tunggal dan kombinasi menentukan jumlah titik sampel menentukan banyak kemungkina kejadian dari berbagai situasi menuliskan himpunan kejadian dari suatu percobaan tes tertulis uraian Tulislah ruang sampel dari kejadian berikut: Pelambungan dari 2 buah uang logam Pelambungan sebuah dadu Diketahui dua buah mata uang logam dilambungkan sekali. P adalah kejadianmuncul dua gambar dan Q kejadian muncul satu angka. Nyatakan P dan Q dalam bentuk himpunan. 6 x 45 Buku paket buku referensi lain Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Alokasi Waktu Sumber Belajar Teknik Bentuk Contoh Instrumen 1.6 menentukan peluang suatu kejadian dan penafsirannya peluang kejadian merancang dan melakukan percobaan untuk menemtukan peluang suatu kejadian menyimpulkan peluang kejadian dari percobaan yang dilakukan untuk mendukung peluang kejadian secara teoritis menentukan peluang suatu kejadian, peluang komplemen suatu kejadian menentukan peluang suatu kejadian dari soal atau masalah sehari-hari menentukan peluang kejadian melalui percobaan menentukan peluang suatu kejadian secara teoritis tes tertulis uraian Sebuah kartu diambil secara acak dari 52 buah kartu bridge. Tentukan peluang terambil kartu skop atau kartu berwarna merah. terdapat 6 bola merah dan 4 bola putih. Jika sebuah bola diambil dalam kotak itu berturut-turut sebanyak dua kali tanpa pengembalian. Tentukan peluang yang terambil kedua-duanya bola merah. 8 x 45 Buku paket buku referensi lain 2. Standar Kompetensi: Menurunkan Rumus Trigonometri dan Penggunaannya Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Alokasi Waktu Sumber Belajar Teknik Bentuk Contoh Instrumen 2.1 menggunakan rumus sinus dan kosinus jumlah dua sudut dan sudut ganda untuk menghitung sinus dan kosinus sudut tertentu Trigonometri jumlah dan selisih dua sudut. Mengulang kembali tentang konsep perbandingan sinus, kosinus dan tangen. Menurunkan rumus sinus dan kosinus jumlah dan selisih dua sudut. Menemukan dan menggunakan rumus kosinus, sinus dan tangen jumlah dan selisih dua sudut. Tes tertulis Uraian Diketahui cos A = * 4/5 dan sin B = 5/13, sudut A dan B tumpul, hitunglah sin (A + B) dan sin (A – B). 2 x 45 menit Buku Paket Menemukan rumus sinus, kosinus dan tangen sudut ganda.. Menerapkan rumus sinus, kosinus dan tangen sudut ganda untuk menyelesaikan soal. Menemukan dan menggunakan rumus sinus, cosinus dan tangen sudut ganda. Tes tertulis Uraian Jika sin⁡〖A= 4/5〗, untuk A sudut tumpul, tentukan nilai – nilai dari: Sin 2A. Cos 2A 2 x 45 menit 2.2 Menurunkan rumus jumlah dan selisih sinus dan kosinus. 2.3 menggunakan rumus jumlah dan selisih sinus dan kosinus. Trigonometri jumlah dan selisih kosinus, sinus dan tangen. Penerapan jumlah dan selisihcosinus, sinus dan tangen Identitas trigonometri Masalah aplikasi Menurunkan jumah dan selisih sinus dan kosinus. Menerapkan perkalian sinus dan kosinus dalam jumlah atau selisih sinus dan kosinus untuk menyelesaikan soal Menyatakan perkaian sinus dan kosinus dalam jumlah atau selisih sinus dan kosinus. Tes tertulis Uraian Tentukan haasil dari sin 105°cos⁡〖15°〗 2x 45 menit Buku Paket Buku Paket Menyelesaikan masalah yang menggunakan rumus – rumus jumlah dan selisih dua sinus dan jumlah atau selisih dua kosinus. Menggunakan rumus sinus, kosinus dan tangen jumlah dan selisih dua sudut. Menggunakan rumus sinus, kosinus dan tangen sudut ganda. Memanipulasi rumus yang ada. Membuktikan identitas trigonometri sederhan. Melakukan latihan menyelesaikan identitas trigonometri Menghitung nilai trigonometri sudut dengan menggunakan rumus jumlah dan selisih sinus dan kosnus. Menggunakan rumus triganometri jumlah dan selisih dua sudut dalam pemecahan masalah. Membuktikan rumus trigonometri jumlah dan selisih dua sudut. Membuktikan rumus trigonometri jumlah dan selisih dari sinus dan kosinus dua sudut. Merancang dan membuktikan identitas trionometri Menyelesaikan masalah yang melibatkan rumus jumlah dan selisihdua sudut Tes tertulis Tes tertulis Tes tertulis Tes tertulis Uraian Uraian Uraian Uraian Nyatakan bentuk 6x + sin 2x dalam bentuk perkalian Buktikan bahwa: 〖sin〗^6 A+ 〖cos〗^6 A+ 3/4 sin^2 2A=1 Jika A dan B masimg – masing adalah sudut – sudut dalam sebuah segitiga bukan siku – siku, buktikan bahwa: tanA+tan⁡〖B+tanC=tan⁡〖A tan⁡〖B tan⁡C 〗 〗 〗 Gelombang stasioner dihasilkan oleh perpaduan ( interferensi) antara dua gelombang berjalan. Gelombang tersebut memiliki amplitudo dan frekuensi sama, tetapi arah perambatannya berlawanan. Tentukan kedudukan x dimana simpangan gelombang stasioner selalu nol 2 x 45 Menit 2x 45 menit 2 x 45 menit 4 x 45menit 3. Standar Kompetensi: menyusun persamaan lingkaran dan garis singgungnya Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Alokasi Waktu Sumber Belajar Teknik Bentuk Contoh Instrumen 3.1 menyusun persamaan lingkaran yang memenuhi persyaratan yang ditentukun Persamaan lingkaran Menentukan persamaan lingkaran yang berpusat di (0,0) dengan menggunakan teorema Phitagoras Menurunkan persaamaan lingkarn yng berpusat di (a,b) Menyatakan bentuk umum persamaan lingkaran Menentukan persamaan lingkaran jika titik pusat dan jari-jari nya diketahui Menyusun persamaan lingkaran yang memenuhi kriteri tertentu Merumuskan persamaan lingkaran yang berpusat di (0,0) Menentukan pusat dan jari-jari lingkaran yang persamaan diketahui Menentukan persamaan lingkaran yang memenuhi criteria tertentu Tes tertulis Ulangan harian Uraian Tentukan persamaan lingkaran yang berpusat di (0,0) dan melalui titik (6,2) Tentukan persamaan lingkaran yang berpusat di (3,-7) dengan jari-jari 5 cm Tentukan pusat dan jari-jari lingkaran L  〖2x〗^2 +〖2y〗^2 -2x +6y -3 = 0 Diketahui lingkaran L  x^2 + y^2 +8x – 12y +34 = 0 tentukan kedudukan garis g  2x –y +2 = 0 8 x 45 menit Buku Paket Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Pencapaian Kompetensi Penilaian Alokasi Waktu Sumber Belajar Teknik Bentuk Contoh Instrumen 3.2 menentukan persamaan garis singgung pada lingkaran dalam berbagai situasi Persamaan garis singgung lingakran Menyelidiki sifat dari garis-garis baik baik menyinggung maupun tidak menyinggung lingkaran Menurunkan teorema tentang persamaan garis singgung pada lingkaran Menentukan persamaan garis singgung lingkaran pada suatu lingkaran Menggunakan diskriminan untuk menentukan persamaan garis singgung pada lingkaran Melukis garis yang menyinggung lingkaran dan menentukan sifat-sifatnya Merumuskan persamaan garis singgung yang melalui suatu titik pada lingkaran Merumuskan persamaan garis singgung yang gradiennya diketahui Tes tertulis Ulangan harian


SILABUS PEMBELAJARAN












SATUAN PENDIDIKAN     : SMA/MA
KELAS/SEMESTER           : XI/1
MATA PELAJARAN          : MATEMATIKA



STATISTIKA

Standar Kompetensi 1 : Menggunakan Aturan Statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah











Kompetensi Dasar
Materi Pembelajaran
Kegiatan Pembelajaran
Indikator Pencapaian Kompetensi
Penilaian
Alokasi Waktu
Sumber Belajar

Teknik
Bentuk
Contoh Instrumen

1.1 membaca data dalam bentuk tabel dan diagram batang, garis, lingkaran dan ogive
STATISTIKA:
·  diagram garis               
·  diagram batang                
·  diagram lingkaran             
·  ogive dan histogram
·      mengamati dan mengidentifikasi tentang data         -data disekitar sekolah      
·  mengidentifikasi data-data yang dinyatakan dalam berbagai model     
·  mengelompokkan berbagai macam diagram dan tabel    
·   menyimak konsep tentang penyajian data
·  membaca sajian data dalam bentuk diagram garis, diagram lingkaran dan diagram batang                         
·  mengidentifikasi nilai suatu data yang ditampilkan pada tabel dan diagram
tes tertulis
uraian
·  Siswa SMA Negeri Jaya Selalu yang lulus mulai tahun pelajaran 2000/2002 s.d tahun pelajaran 2006/2007
batang.png
Analisalah diagram diatas!
·  Berikut ini adalah data ulangan nilai matematika dari 32 orang siswa:
30, 40, 80, 70, 78, 69, 
45, 78, 35, 70, 80, 90,
68, 90, 90, 89,  65, 75,
85, 85, 45, 56, 75, 68,
70, 70, 80, 70, 45, 65,
75, 85.
Sajikanlah data tersebut ke dalam bentuk tabel distribusi  frekuensi berkelompok!
4 x 45
·      Buku paket        
·      buku referensi lain          
·      internet








Kompetensi dasar
Materi pembelajaran
Kegiatan pembelajaran
Indikator pencapaian kompetensi
Penilaian
Alokasi waktu
Sumber belajar
Teknik
Bentuk
Contoh instrumen
1.2 menyajikan data dalam bentuk tabel dan diagram batang, garis, lingkaran dan ogive serta penafsirannya
statistika:
·  diagram garis 
·  diagram batang 
·  diagram lingkaran
·  ogive dan histogram
·   melakukan latihan dalam berbagai penyajian data
·   menafsirkan data dari berbagai macam bentuk      
·   mengambil kesimpulan dari dua atau lebih kelompok data atau informasi yang sejenis
·   menyajikan data dalam bentuk diagram batang, garis, lingkaran dan ogive serta penafsirannya
·   menafsirkan data dalam bentuk diagram batang, garis, lingkaran dan ogive
tes tertulis
uraian
·  Sebuah areal parker akan di amati jumlah kendaraan yang parker dalam selang waktu tertentu, data tersebut di sajikan dalam bentuk berikut :
Waktu
Banyak kendaraan
06.00
0
08.00
14
10.00
18
12.00
20
14.00
12
16.00
8
18.00
18

·  Daftar frekuensi kumulatif kurang dari dan lebih dari dapat disajikan dalam bidang Cartesius. Tepi atas (67,5; 70,5; …; 82,5) atau tepi bawah (64,5; 67,5; …; 79,5)
buatlah ogive kemudian tafsir data tersebut!


4 x 45
·  Buku paket   
·   buku referensi lain   
·    internet








Kompetensi Dasar
Materi Pembelajaran
Kegiatan Pembelajaran
Indikator Pencapaian Kompetensi
Penilaian
Alokasi Waktu
Sumber Belajar
Teknik
Bentuk
Contoh Instrumen
1.3 menghitung ukuran pemusatan, ukuran letak dan ukuran penyebaran data serta penafsirannya
ukuran pemusatan:              rataan, nodus, median                                                  ukuran letak:           kuartil, desil               ukuran penyebaran:               jangkauan, simpangan kuartil, variansi dan simpangan baku
·   mendiskusikan pentingnya penyajian data dalam bentuk histogram dan ogive
·   membuat tabel distribusi frekuensi dari data tertentu
·   menggambar grafik histogram dari tabel distribusi     
·   menghitung ukuran pemusatan data baik data tunggal maupun data berkelompok
·   berdiskusi dengan kelompok untuk menyelesaikan soal-soal sehari-hari untuk mencari ukuran pemusatan data kemudian disajikan dalam bentuk diagram dan menafsirkan hasil yang didapat
·  membaca sajian data dalam bentuk tabel distribusi frekuensi dan histogram 
·   menyajikan data dalam bentuk tabel distribusi frekuensi dan histogram  
·    menentukan rataan, median dan modus
·   memberikan tafsiran terhadap ukuran pemusatan
tes tertulis
Uraian
·  Diketahui data sebagai berikut.
80 66 74 74 70 71 78 74 72 67 72 73 73 72 75 74 74 74 72 72 66 75 74 73 74 72 79 71 75 75
78 69 71 70 79 80 75 76 68 68
Buatlah table distribusi frekuensi dari data di atas ?







tabel distribusi kumulatif
Sajikan dalam histogram!!

Nilai rapor seorang siswa pada semester ganjil adalah sebagai berikut : 7, 8, 8, 8, 9, 6, 6, 7, 8, 7. Hitunglah rataan, median dan modus.
4 x 45
·  Buku paket 
·   buku referensi lain
·   internet





Kompetensi dasar
Materi pembelajaran
Kegiatan pembelajaran
Indikator pencapaian kompetensi
Penilaian
Alokasi waktu
Sumber belajar
Teknik
Bentuk
Contoh Instrumen
1. 4 menggunakan aturan perkalian, permutasi dan kombinasi dalam pemecahan masalah
peluang:               
·   aturan perkalian
·  permutasi       
·   kombinasi
·  menentukan berbagai kemungkinan pengisian tempat dalam permainan tertentu atau masalah-masalah lainnya
·   berdiskusi mengenai kaidah pencacahan yang mengarah pada aturan perkalian, permutasi dan kombinasi  
·   menerapkan rumus aturan perkalian, permutasi, dan kombinasi untuk menyelesaikan soal            
·   menyelesaikan masalah-masalah yang berkaitan dengan perkalian, permutasi dan kombinasi
·  menyusun aturan perkalian, permutasi dan kombinasi
·  menggunakan aturan perkalian, permutasi dan kombinasi
tes tertulis
uraian
·   Dari lima buah angka 2, 3, 5, 7, dan 9 akan disusun menjadi suatu bilangan yang terdiri dari 4 angka. Berapa banyak bilangan yang dapat disusun jika:
a)      angka-angka boleh berulang
b)      angka-angkanya tidak boleh berulang?
·   Badu mempunyai 5 baju ,3 celana panjang dan 2 topi yang berlainan warna .ada barapa pasang baju,celana panjang  dan topinyang dapat dipakai?dan tentukan nilai dari P(8,3), serta
6 x 45
·   Buku paket 
·   buku referensi lain









Kompetensi dasar
Materi pembelajaran
Kegiatan pembelajaran
Indikator pencapaian kompetensi
Penilaian
Alokasi waktu
Sumber belajar
Teknik
Bentuk
Contoh Instrumen
1.5 menentukan ruang sampel suatu percobaan
ruang sampel
·  mendaftarkan titik-titik sampel dari suatu percobaan acak
·   menentukan ruang sampel dari percobaan acak, tunggal dan kombinasi
·   menentukan jumlah titik sampel
·  menentukan banyak kemungkina kejadian dari berbagai situasi  
·  menuliskan himpunan kejadian dari suatu percobaan                    
tes tertulis
uraian
·   Tulislah ruang sampel dari kejadian berikut:
a)    Pelambungan dari 2 buah uang logam
b)   Pelambungan sebuah dadu
·  Diketahui dua buah mata uang logam dilambungkan sekali. P adalah kejadianmuncul dua gambar dan Q kejadian muncul satu angka. Nyatakan P dan Q dalam bentuk himpunan.
6 x 45
·  Buku paket
·       buku referensi lain         

Kompetensi Dasar
Materi Pembelajaran
Kegiatan Pembelajaran
Indikator Pencapaian Kompetensi
Penilaian
Alokasi Waktu
Sumber Belajar
Teknik
Bentuk
Contoh Instrumen
1.6 menentukan peluang suatu kejadian dan penafsirannya
peluang kejadian
·  merancang dan melakukan percobaan untuk menemtukan peluang suatu kejadian 
·   menyimpulkan peluang kejadian dari percobaan yang dilakukan untuk mendukung peluang kejadian secara teoritis
·   menentukan peluang suatu kejadian, peluang komplemen suatu kejadian 
·  menentukan peluang suatu kejadian dari soal atau masalah sehari-hari
·  menentukan peluang kejadian melalui percobaan
·   menentukan peluang suatu kejadian secara teoritis
tes tertulis
uraian
·   Sebuah kartu diambil secara acak dari 52 buah kartu bridge. Tentukan peluang terambil kartu skop atau  kartu berwarna merah.

·  terdapat 6 bola merah dan 4 bola putih. Jika sebuah bola diambil dalam kotak itu berturut-turut sebanyak dua kali tanpa pengembalian. Tentukan peluang yang terambil kedua-duanya bola merah.
8 x 45
·   Buku paket  
·   buku referensi lain      


2. Standar Kompetensi: Menurunkan Rumus Trigonometri dan Penggunaannya

Kompetensi
Dasar
Materi
Pembelajaran
Kegiatan Pembelajaran
Indikator Pencapaian   Kompetensi
Penilaian
Alokasi
Waktu
Sumber
Belajar
Teknik
Bentuk
Contoh Instrumen
2.1 menggunakan rumus sinus dan kosinus jumlah dua sudut dan sudut ganda untuk menghitung sinus dan kosinus sudut tertentu
Trigonometri jumlah dan selisih dua sudut.
·         Mengulang kembali tentang konsep perbandingan sinus, kosinus dan tangen.
·         Menurunkan rumus sinus dan kosinus jumlah dan selisih dua sudut.
·  Menemukan dan menggunakan rumus kosinus, sinus dan tangen jumlah dan selisih dua sudut.
Tes tertulis
Uraian
Diketahui cos A = *  dan sin B =  sudut A dan B tumpul, hitunglah sin (A + B) dan sin (A – B).

2 x 45 menit
Buku Paket
·         Menemukan rumus sinus, kosinus dan tangen sudut ganda..
·         Menerapkan rumus sinus, kosinus dan tangen sudut ganda untuk menyelesaikan soal.
·         Menemukan dan menggunakan rumus sinus, cosinus dan tangen sudut ganda.
Tes tertulis
Uraian
Jika , untuk A sudut tumpul, tentukan nilai – nilai dari:
a.   Sin 2A.
b.   Cos 2A
2 x 45 menit
2.2 Menurunkan rumus jumlah dan selisih sinus dan kosinus.






















 
2.3 menggunakan rumus jumlah dan selisih sinus dan kosinus.
Trigonometri jumlah dan selisih kosinus, sinus dan tangen.





















Penerapan jumlah dan selisihcosinus, sinus dan tangen
·   Identitas trigonometri
·   Masalah aplikasi
·   Menurunkan jumah dan selisih sinus dan kosinus.
·   Menerapkan perkalian sinus dan kosinus dalam jumlah atau selisih sinus dan kosinus untuk menyelesaikan soal
·  Menyatakan perkaian sinus dan kosinus dalam jumlah atau selisih sinus dan kosinus.
Tes tertulis
Uraian
Tentukan haasil dari sin 105
2x 45 menit
Buku Paket
























 Buku Paket
·   Menyelesaikan masalah yang menggunakan rumus – rumus jumlah dan selisih dua sinus dan jumlah atau selisih dua kosinus.
·   Menggunakan rumus sinus, kosinus dan tangen jumlah dan selisih dua sudut.
·   Menggunakan rumus sinus, kosinus dan tangen sudut ganda.
·   Memanipulasi
·   rumus yang ada.
·    Membuktikan identitas trigonometri sederhan.
·   Melakukan latihan menyelesaikan identitas trigonometri


 
·   Menghitung nilai trigonometri sudut dengan menggunakan rumus jumlah dan selisih sinus dan kosnus.
·   Menggunakan rumus triganometri jumlah dan selisih dua sudut dalam pemecahan masalah.


·   Membuktikan rumus trigonometri jumlah dan selisih dua sudut.
·    Membuktikan rumus trigonometri jumlah dan selisih dari sinus dan kosinus dua sudut.
·   Merancang dan  membuktikan identitas trionometri








·   Menyelesaikan masalah yang melibatkan rumus jumlah dan selisihdua sudut
Tes tertulis






Tes tertulis






Tes tertulis










Tes tertulis
Uraian







Uraian







Uraian











Uraian
Nyatakan bentuk 6x + sin 2x dalam bentuk perkalian





Buktikan bahwa:





Jika A dan B masimg – masing adalah sudut – sudut dalam sebuah segitiga bukan siku – siku, buktikan bahwa:

Gelombang stasioner dihasilkan oleh perpaduan ( interferensi) antara dua gelombang berjalan. Gelombang tersebut memiliki amplitudo dan frekuensi sama, tetapi arah perambatannya berlawanan.
Tentukan kedudukan x dimana simpangan gelombang stasioner selalu nol
2 x 45
Menit






2x 45 menit






2 x 45 menit










4 x 45menit











3.  Standar Kompetensi: menyusun persamaan lingkaran dan garis singgungnya

Kompetensi
Dasar
Materi
Pembelajaran
Kegiatan Pembelajaran
Indikator Pencapaian   Kompetensi
Penilaian
Alokasi
Waktu
Sumber
Belajar
Teknik
Bentuk
Contoh Instrumen
3.1 menyusun persamaan lingkaran yang memenuhi persyaratan yang ditentukun
Persamaan lingkaran
·         Menentukan persamaan lingkaran yang berpusat di  dengan menggunakan teorema Phitagoras
·         Menurunkan persaamaan lingkarn yng berpusat di
·         Menyatakan bentuk umum persamaan lingkaran
·         Menentukan persamaan lingkaran jika titik pusat dan jari-jari nya diketahui
·         Menyusun persamaan lingkaran yang memenuhi kriteri tertentu
·  Merumuskan persamaan lingkaran yang berpusat di
·  Menentukan pusat dan jari-jari lingkaran yang persamaan diketahui
·  Menentukan persamaan lingkaran yang memenuhi criteria tertentu
·         Tes tertulis
·         Ulangan harian
Uraian
·         Tentukan persamaan lingkaran yang berpusat di  dan melalui titik
·         Tentukan persamaan lingkaran yang berpusat di  dengan jari-jari 5 cm
·         Tentukan pusat dan jari-jari lingkaran 
·          

1)    Diketahui lingkaran   tentukan kedudukan garis

8 x 45 menit
Buku Paket




Kompetensi
Dasar
Materi
Pembelajaran
Kegiatan Pembelajaran
Indikator Pencapaian   Kompetensi
Penilaian
Alokasi
Waktu
Sumber
Belajar
Teknik
Bentuk
Contoh Instrumen
3.2 menentukan persamaan garis singgung pada lingkaran dalam berbagai situasi
Persamaan garis singgung lingakran
·         Menyelidiki sifat dari garis-garis baik baik menyinggung maupun tidak menyinggung lingkaran
·         Menurunkan teorema tentang persamaan garis singgung pada lingkaran
·         Menentukan persamaan garis singgung lingkaran pada suatu lingkaran
·         Menggunakan diskriminan untuk menentukan persamaan garis singgung pada lingkaran
·  Melukis garis yang menyinggung lingkaran dan menentukan sifat-sifatnya
·  Merumuskan persamaan garis singgung yang melalui suatu titik pada lingkaran
·  Merumuskan persamaan garis singgung yang gradiennya diketahui
·         Tes tertulis
·         Ulangan harian
Uraian
·  tunjukan bahwa titik (6,-8) terletak pada lingkaran  +  = 100 kemudian tentukan pula garis singgungnya.

·  tentukan persamaan garis singgung yang melalui titik A(2.1) pada lingkaran x2+y2-2x+4y-5 = 0
·  Tentukan persamaan garis singgung melalui titik (5, 1) di luar lingkaran x2 + y2= 13

12 x 45 menit
Buku Paket



Tidak ada komentar:

Poskan Komentar